
1

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 1

Optimizing the
Interrupt Service Routines
in MPLAB® C18 Compiler

Hi and thank you for choosing this webseminar. This presentation is about
optimizing the interrupt service routines in MPLAB® C18 compiler.
My name is Alireza Moshtaghi and I am a software engineer in the language tools
team at Microchip Technology.
Just by looking at the topic of this webseminar one can tell that it is touching on a
very specific corner of software development on the C18 programming environment.
And obviously you may ask “is this webseminar for me?”

2

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 2

Is this webseminar for me?

● Are you upgrading from C18 v2.x to
C18 v3.x?

● Are you using C18 v3.x and
─ Experiencing different result when you change something in your

program?

or

─ Experiencing slower interrupt handling in your program?

If you answer yes to any of the above,
then this webseminar is for you.

Well, if you are upgrading from version 2.x of C18 compiler to version 3.x
Or
If you are already using version 3.0 and above of MPLAB® C18 compiler but
experiencing certain problems for example:
When you modify something in your code, and notice a different result in
another part of your program,
Or
If in general you are experiencing slower interrupt handling performance
than expected,

Or if simply you want to learn more about C18 compiler,

Then you can benefit from this webseminar, given that you know the basics.

3

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 3

Do I know the basics?
● In this webseminar it is expected that

you know:
─ C programming

● Written C programs using C18 compiler
● Know how to define interrupt vectors
● Know how to define ISRs using

#pragma interrupt and
#pragma interruptlow

─ PIC18 architecture
● Know the interrupt vectors in PIC18
● Know the difference between low and high priority

interrupts.

This webseminar is not comprehensive, it is assumed that you know the
basics.
As far as C programming, we would like you to have had experienced
programming using the MPLAB® C18 compiler.
It is crucial that you know how to define interrupt vectors and to know how to
define the Interrupt Service Routine using the #pragma interrupt and
#pragma interruptlow.
Also, it is important that you know about the PIC18 architecture:
Know about the interrupt vectors;
And know about the difference between low and high priority interrupts.

If you think that you need to know about these topics…

4

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 4

Resources

● MPLAB® C18 C Compiler User’s
Guide

● MPLAB C18 C Compiler Getting
Started Guide

● Data Sheet
● Microchip Web Forums
● www.microchip.com

You can refer to these resources. I will repeat this slide at the end of this
presentation.

5

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 5

Interrupt Support

● The three components of Interrupt
Handling:

─ Define Vector function(s)

─ Define the Interrupt Service Routine
(ISR)

─ Preserving the Context

If you have come this far, then you really are interested. So lets directly go to
the main topic.
In the discussions about Interrupt Service routines in general, three topics
are important:
Defining the vector function(s),
defining the interrupt service routine itself,
And preserving the context, or as some people call it, context switch.
As I mentioned before, it is assumed that you are already familiar with the
topics in first two bullets
(pause)
The focus of this webseminar is on the third bullet, preserving the context
and how to make it more efficient.
(pause)
But what does context preservation exactly mean?

6

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 6

Preserving the Context

● What is the “context” ?
─ State of the program
─ CPU resources

● How to preserve the context?
1. Identify the vulnerable resources
2. Save the vulnerable resources
3. Execute the ISR
4. Restore the saved resources

In the computer science jargon, context is synonymous to the state of the
program. Some people may also look at it as CPU resources that the
program is using at a given time. These resources may be anything from
registers to memory and peripherals.
(pause)
In a few minutes you will see the list of resources that MPLAB® C18
manages.
But before that, I would like you to know what it takes to preserve the
context.
The first step is to identify the vulnerable resources. Vulnerable resources
are usually the resources that are shared by the ISR and the main line code.
Once we know which resources are vulnerable, we must arrange for them to
be saved prior to the execution of ISR and be restored after the ISR is
finished
usually the process of copying the vulnerable resources onto the stack and
later restoring them is very time consuming. So careful identification of
vulnerable resources is the key to implementing a fast Interrupt Service
Routine.
Now the question is who is responsible for identifying the vulnerable
resources?

7

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 7

Shift of Paradigm

● C18 V2.x
─ User identifies the vulnerable resources

of the program using save keyword
● C18 V3.x

─ Compiler conservatively identifies the
vulnerable resources of the program

─ User can exclude the protected
resources using nosave keyword

In the C18 versions before 3.0, the user is responsible for identifying the vulnerable
resources. Pretty much the compiler would not even try to identify what needs to be
saved. This turned out to be an error prone and frustrating burden.
So in versions 3.0 and higher of MPLAB C18, the compiler conservatively identifies
the vulnerable resources. It means that, if the compiler can not prove whether a
resource is vulnerable or not, it plays it safe and saves the resource anyway.
However, the user can use the nosave keyword to keep the compiler from saving
the resources that are not vulnerable. Later we will see examples about this feature.

8

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 8

How Conservative?

● ISR does not call another function:
─ Only save what ISR modifies

// modifies WREG, BSR, STATUS,
// TBLPTR, TABLAT
// so save these only
void isr (void)
{

romCounter++;
}

● ISR calls another function
─ Save all compiler managed resources

// save all of the compiler managed resources
void isr (void)
{

foo();
}

Here is an example about the conservative approach of C18
The Interrupt Service Routine in the first bullet does not call any functions. So the
compiler can analyze the isr function and identify only the resources that are
modified. It turns out that this function modifies WREG, BSR, STATUS, TBLPTR
and TABLAT registers. So the compiler will automatically save these registers and
only these registers.
In the second example, function foo is called from the Interrupt Service Routine. In
this case, the compiler does not know what is being modified in function foo in fact
function foo may very well be in a separate compilation module. So the compiler
plays conservatively and saves all of the compiler managed resources.
(pause)
This takes us to the question “what are the compiler managed resources?”

9

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 9

Compiler Managed Resources

Math library data, AARGA, AARGBMATHDATA section

Intermediate values in complex calculations.tmpdata section

Calculation resultsSTATUS

Intermediate calculationsWREG

Multiplication results, return values, intermediate calculationsPROD

Bank selectionBSR

Accessing values in program memoryTBLPTR

Stack PointerFSR2

Frame PointerFSR1

Pointers to RAMFSR0

Function pointer invocationPCLATH

Accessing values in program memoryTABLAT

Function pointer invocationPCLATU

Primary Use(s)Compiler Managed
Resources

vitalvital

ROM ROM
accessaccess

FunctionFunction
PointerPointer

This table captures the resources that the MPLAB C18 compiler manages.
Of course the compiler analyzes the Interrupt Service Routine, only for these
resources, to find if any of them need to be preserved.

The first 7 registers in this table are what I call vital; meaning that most of the
time you would leave the compiler free to preserve these resources across
the ISR if needed.
Next are the TBLPTR and TABLAT registers which are used for accessing
the program memory, if you know that your ISR thread does not access any
rom data, you can keep the compiler from unnecessarily saving TBLPTR
and TABLAT registers.
Likewise, if you know that your ISR thread does not use function pointers,
you can keep the compiler from saving PCLATH and PCLATU registers.

MATHDATA is a special section that is used by the math libraries, it is also
used in the traditional mode to implement some of the function interfaces.
This section is small and usually you do not need to worry about it.
The last item in the table is .tmpdata section which contains the intermediate
values in complex calculations. In the next slides I explain this section.

10

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 10

What is Temporary Data Section?

● A place to save intermediate
values

int e;
void foo (int a,int b,int c,int d)
{

e = (a+b) * (c-d);
}

+ -

tmp_1tmp_2

a b c d

*

e

Look at this simple example. On an 8-bit processor, it is unavoidable that some
temporary variables are needed when calculating an expression such as (a+b) * (c-
d).
The dataflow graph on the right hand side of this slide shows a possible way of
calculating this expression. I am not saying that C18 performs the exact same thing,
however, in general you can consider this close to reality, where the result of a+b is
placed in a temporary variable then the result of c-d is placed in another temporary
variable and then the multiply is performed on the two temporary variables to
produce the value in e

11

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 11

Temp Data is a Shared Data Section

char e,f;

void foo (char a,char b,char
c,char d)

{
e = (a+b) * (c-d);

}

void bar (char a,char b,char
c,char d)

{
e = (a-b) / (c-d);

}

+ -

tmp_1tmp_2

a b c d

*

e

- -

tmp_1tmp_2

a b c d

/

f

tmp_1
tmp_2
tmp_3

overlayoverlay
SectionSection

Furthermore, in C18, in order to save valuable memory, the .tmpdata section is
shared among functions, or in C18 terminology, it is overlaid. It means that in the
case of foo() and bar() functions, the same tmp_1 and tmp_2 variables are used to
save the intermediate calculations.
Now this impose no problem because foo() and bar() are part of the same execution
thread. In other words, foo() and bar() will never be active at the same time.
So what can go wrong?

12

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 12

What can go wrong?

- -

tmp_1tmp_2

a b c d

/

f

tmp_1
tmp_2
tmp_3

VulnerableVulnerable
tmpdatatmpdata sectionsection

Interrupt Interrupt

CorruptsCorrupts
foofoo() ()

Data corruption
In function foo()

tmp_1 ← c-d
tmp_2 ← a+b

char w,x,y,z
void isr ()
{

w = (x-w) * (y-z);
}

Presence of an interrupt can change things. In this hypothetical example, function
foo() is using the .tmpdata section for intermediate calculations. Consider the
scenario that foo has calculated c-d and has placed its result in tmp_1. Before it can
calculate a+b, an interrupt occurs and isr() is activated.
If the isr() function were to use the same temporary variables to do its own
calculations on w, x, y and z, the corruption of data in tmp_1 was emminent.
This is an example of vulnerable resource.
Now how does C18 address this possible problem?

13

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 13

The Solution

- -

isr_tmp_1isr_tmp_2

a b c d

/

f

isr_tmp_1
isr_tmp_2

tmp_1
tmp_2
tmp_3

overlayoverlay
SectionSection

Interrupt Interrupt

ISR receives unique tempdata section
In function foo()

tmp_1 ← c-d
tmp_2 ← a+b

char w,x,y,z
void isr ()
{

w = (x-w) * (y-z);
}

No CorruptionNo Corruption

In C18, the ISR receives a unique .tmpdata section. In effect, in this method, we are
removing the vulnerability of the .tmpdata section.
So no matter what function foo() does on the original .tmpdata section, the isr()
function will place its temporary variables in a separate section, eliminating the
chance of data corruption.
Now in this example, the Interrupt Service Routine is not calling any other function,
so we are safe.
(pause)
But what happens if it were to call another function? what if the called function
modifies the original .tmpdata?
(pause)
As I mentioned before, in this case, the compiler will play conservatively and save
all resources.
Of course it is very likely that in this approach, compiler saves more than needed,
imposing unwanted overhead that slow down the Interrupt Service Routine.
So we have an optimization opportunity. But the compiler can’t handle it on its own,
and requires some clue from the user.

14

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 14

Optimization Opportunity

● The .tmpdata section can grow big
depending on the program, affecting the
response time of the ISR.

● If ISR calls another function, .tmpdata will be
saved

● Solution:

Assign a different section for temporary
data of the called function.

Usually, .tmpdata section grows large depending on how complex the
calculations in the program are, so if the ISR is calling another function, the
majority of penalty that the program pays is on preserving this section.
(pause)
So how can we avoid the need for saving the .tmpdata section? The solution
is to remove the vulnerability of the .tmpdata section by assigning the ISR
thread to a different temporary data section.
How?

15

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 15

Reducing ISR Context
Save/Restore Overhead

● Determine which C functions are called by ISR

● Change the temporary data section for these
functions using:
#pragma tmpdata newTmpDataSectionName

● Use nosave clause on ISR for .tmpdata section
#pragma interrupt[low] isr_func nosave=section
(“.tmpdata”)

First determine which C functions are called by the ISR.
Then Change the temporary data section for these functions using
#pragma tmpdata with the new tmporary data section name.

Now, it is safe to tell the compiler to not save the .tmpdata section for this
Interrupt Service Routine
You can do this using the nosave keyword in the #pragma interrupt or the
#pragma interruptlow

16

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 16

Example 1
void setPort (char a)
{

PORTA = a;
}

#pragma interruptlow low_isr
void low_isr (void)
{

setPort(1);
}

Compiler will automatically
save/restore .tmpdata because

of call to function setPort()

Now to wrap things up, lets look at an example:
And see how can we apply what we have learned.
Before I show you the solution, I would like to ask that you pause the
presentation for a moment and give yourself a chance to remember what we
discussed so far
(pause)
Here, function setPort() is only doing a write to port A, by doing code
analysis, a savvy programmer may be able to conclude that setPort()
function makes no access to .tmpdata. But the compiler does not perform
any cross function analysis, it just knows that a function is called from the
low_isr() interrupt service routine, so it saves and restores all compiler
managed resources including the .tmpdata section, resulting in a poor
performance for the Interrupt Service Routine.

17

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 17

Example 1
void setPort (char a)
{

PORTA = a;
}

#pragma interruptlow low_isr nosave=section
(“.tmpdata”)

void low_isr (void)
{

setPort(1);
}

Now that we know that tmpdata section is not used, we can use the nosave
keyword in the pragma interruptlow to keep the compiler from saving it.
You may ask do I always have to make assembly code analysis in order to
know if I can use the nosave keyword on .tmpdata section?
The answer is no and I will show you why in the next example.

18

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 18

Example 2
void setPort (char a, char b, char c, char d)
{

PORTA = (a-b) * (c-d);
}

#pragma interruptlow low_isr nosave=section (“.tmpdata”)
void low_isr (void)
{

setPort(1,2,3,4);
}

In this example, I have modified the setPort() function to also do some
complex calculation.
Here, setPort() is, in fact, modifying the .tmpdata section, but, my Interrupt
Service routine is not saving it…
As result of this modification, user will experience malfunction elsewhere in
the program.
This is a common mistake, and usually difficult to catch, because the
symptoms occur in the main thread, while the problem is in the ISR thread.
(pause)
In order to avoid this problem and, also, have the performance that we want
in the ISR without need to analyze the assembly code generated by the
compiler …

19

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 19

Example 2
#pragma tmpdata ISRtmpdata // use ISRtmpdata

void setPort (char a, char b, char c, char d)
{

PORTA = (a-b) * (c-d);
}

#pragma interruptlow low_isr nosave=section (“.tmpdata”)
void low_isr (void)
{

setPort(1,2,3,4);
}
#pragma tmpdata // use the default .tmpdata section

We can direct the compiler to place the temporary data for our Interrupt Service thread in a
section, separate from the default .tmpdata section. By doing so, we don’t need to analyze
the code to see if the tmpdata section is used or not.

In this example, in the top oval, I am defining a new temporary data section using the
#pragma tmpdata and calling it ISRtmpdata.
The effect of this pragma is to make all functions that follow it to use ISRtmpdata section as
their temporary data section.

Using a #pragma tmpdata without any name makes the compiler to reset the temporary data
section to the default for the functions that follow.
And this is what I am using in the bottom oval in order to return to the default .tmpdata for
the rest of my program.
(pause)
The combination of these two #pragma statements takes care of my objective, which is to
assign a unique temporary data section to my Interrupt Service Routine thread, and remove
the vulnerability of .tmpdata section, so I can safely avoid preserving this potentially large
section across the ISR.
But is there any more optimization possible for this ISR?

20

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 20

Even more Optimization

● setPort() does not use the program
memory or function pointers,
so we can do:

#pragma interruptlow low_isr nosave=section (“.tmpdata”),\
TBLPTRL, TBLPTRH,TBLPTRU,TABLAT,PCLATH,PCLATU

As a matter of fact, yes:
Note that neither of the two functions low_isr() and setPort() use rom variables nor
they use function pointers. So I can add the register:
“table pointer low”,
“table pointer high”,
“table pointer upper”,
“table latch”,
“pc latch high” and
“pc latch upper”
to the list of nosave items and be confident about the correct execution of my
program.

In this example, I am assuming that setPort() function is only called from the ISR. If
your main line code also calls the setPort() function, then we can’t share the same
temporary data section for the isr_low() and setPort() functions

21

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 21

Example 3
#pragma tmpdata setPorttmp // use setPorttmp

void setPort (char a, char b, char c, char d)
{

PORTA = (a-b) * (c-d);
}

#pragma tmpdata // use the default .tmpdata section

#pragma interruptlow low_isr nosave=section (“.tmpdata”)\
save=section (“setPorttmp”)
void low_isr (void)
{

setPort(1,2,3,4);
}

In that case, I must use a separate temporary data section for setPort()
function.
Here is the same example, except that setPort() function is called not only
from low_isr, but also from the main line code.
What I am doing here is to isolate the temporary data section of setPort()
from the default .tmpdata section as well as the temporary data section of
my ISR.
Note that I have added the the save keyword in the #pragma interruptlow
statement, because the temporary data section for setPort() function must
be saved.

22

© 2007 Microchip Technology Incorporated. All Rights Reserved. Optimizing the Interrupt Service Routines in MPLAB® C18 Slide 22

Resources

● MPLAB® C18 C Compiler User’s
Guide

● MPLAB® C18 C Compiler Getting
Started Guide

● Data Sheet
● Microchip Web Forums
● www.microchip.com

Well, this is all I had for this webseminar.

I hope it helps you in achieving the objectives of your projects. Here I am
repeating the list of resources that you can refer to in case of any question.
The users guide of C18 provides a detailed description of everything that you
need to know.
The Getting started guide gives you a big picture through many examples.
There is a section of Frequently asked question in this guide that every one
can benefit from.
The data sheets contain comprehensive architectural information about the
part that you want to use.
And finally there is a forum for C18 that you can always go and ask your
questions from gurus.
You can access all of these from www.microchip.com

Thank you.

